Rotating Koch curve – summing up

This is just a summing up! For details look at the previous post (below) with three Koch curve pictures.


If a ”snow flake” bounded by a Koch curve rotates around a horizontal axis through the centre the volume of the generated body is

VolH = 245πL³/2916

For rotation around a vertical axis the volume becomes
VolV = 11πL³√3/243

VolH/VolV = 245√3/396 ≈ 1.07

L is the length of the side in the original equilateral tringle from which the Koch curve is generated. The horizontal axis has length 2L/3 and the vertical axis 2L/√3.



Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in: Logo

Du kommenterar med ditt Logga ut /  Ändra )


Du kommenterar med ditt Google+-konto. Logga ut /  Ändra )


Du kommenterar med ditt Twitter-konto. Logga ut /  Ändra )


Du kommenterar med ditt Facebook-konto. Logga ut /  Ändra )

Ansluter till %s

%d bloggare gillar detta: